Approximation of an optimal control problem for the time-fractional Fokker-Planck equation

نویسندگان

چکیده

<p style='text-indent:20px;'>In this paper, we study the numerical approximation of a system PDEs which arises from an optimal control problem for time-fractional Fokker-Planck equation with time-dependent drift. The is composed backward Hamilton-Jacobi-Bellman and forward equation. We approximate Caputo derivatives in by means L1 schemes Hamiltonian finite differences. scheme constructed such way that duality structure PDE preserved on discrete level. prove well-posedness convergence to solution continuous problem.</p>

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo-spectral ‎M‎atrix and Normalized Grunwald Approximation for Numerical Solution of Time Fractional Fokker-Planck Equation

This paper presents a new numerical method to solve time fractional Fokker-Planck equation. The space dimension is discretized to the Gauss-Lobatto points, then we apply pseudo-spectral successive integration matrix for this dimension. This approach shows that with less number of points, we can approximate the solution with more accuracy. The numerical results of the examples are displayed.

متن کامل

Parameters of the fractional Fokker-Planck equation

We study the connection between the parameters of the fractional Fokker-Planck equation, which is associated with the overdamped Langevin equation driven by noise with heavytailed increments, and the transition probability density of the noise generating process. Explicit expressions for these parameters are derived both for finite and infinite variance of the rescaled transition probability de...

متن کامل

Fractional Fokker-Planck equation for fractal media.

We consider the fractional generalizations of equation that defines the medium mass. We prove that the fractional integrals can be used to describe the media with noninteger mass dimensions. Using fractional integrals, we derive the fractional generalization of the Chapman-Kolmogorov equation (Smolukhovski equation). In this paper fractional Fokker-Planck equation for fractal media is derived f...

متن کامل

Fokker Planck Equation for Fractional Systems

The normalization condition, average values, and reduced distribution functions can be generalized by fractional integrals. The interpretation of the fractional analog of phase space as a space with noninteger dimension is discussed. A fractional (power) system is described by the fractional powers of coordinates and momenta. These systems can be considered as non-Hamiltonian systems in the usu...

متن کامل

Fractional Fokker-Planck equation, solution, and application.

Recently, Metzler et al. [Phys. Rev. Lett. 82, 3563 (1999)], introduced a fractional Fokker-Planck equation (FFPE) describing a subdiffusive behavior of a particle under the combined influence of external nonlinear force field, and a Boltzmann thermal heat bath. In this paper we present the solution of the FFPE in terms of an integral transformation. The transformation maps the solution of ordi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of dynamics and games

سال: 2021

ISSN: ['2164-6066', '2164-6074']

DOI: https://doi.org/10.3934/jdg.2021013